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SUMMARY 
 
The consideration and treatment of uncertainties is an essential part of any risk assessment 
and risk management process. Uncertainties can either be naturally inherent or modelling and 
statistical related. This deliverable aims to provide a rational basis for the quantification of the 
various uncertainties existent in the risk assessment and risk management processes. A 
general description of the uncertainties in the modelling, prediction and decision making 
processes and their treatment and propagation can be found in Deliverable D0.3 of the 
SafeLand project. In order to obtain a complete picture of the issues and aspects concerning 
the treatment, quantification and management of uncertainties in the risk assessment, risk 
management and decision making processes, it is advised that this deliverable report be read 
in conjunction with the report of Deliverable D0.3.  
 
The issue of knowledge and uncertainty in the real world decision making platform is 
introduced in Chapter 2 of this report. Here, a differentiation of uncertainties into aleatory and 
epistemic uncertainties is introduced, primarily for the purpose of setting focus on how 
uncertainty may be reduced. In Chapter 3, focus is directed on the uncertainties in the 
different models used for the quantification of risk and the characterisation of parameters in 
the models. Guiding principles and a general basis for the modelling and representation of the 
underlying uncertainties in the use of these models for the quantification and estimation of 
risks are provided. A Bayesian approach is advocated for the representation, handling and 
management of uncertainties in the context of decision making and is described in Chapter 4. 
Finally, an example on the modelling and management of uncertainties associated with 
rockfall hazards following a Bayesian approach is provided in Chapter 5. 
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1 INTRODUCTION 

1.1 BACKGROUND 

Risk assessment and risk management can be seen as essential and integral aspects and inputs 
to the decision planning, decision support and decision making processes. The importance of 
risk is brought out in the following quotation of Henry Ford : “The best we can do is size up 
the chances, calculate the risks involved, estimate our ability to deal with them, and then 
make our plans with confidence.” Decision making in general is a difficult issue due to the 
significant underlying uncertainties and complex interrelation of events and choices affecting 
the benefits and losses associated with decisions. Typical decision problems are subject to a 
combination of inherent, modelling and statistical uncertainties. Estimates of risk are hence 
pervaded by significant uncertainty due to the uncertainty in data and indicators, and 
uncertainty in models which use data and indicators as inputs. Neglecting uncertainties could 
lead to an unsafe estimate of loss, thereby hindering the desired reduction of risk to acceptable 
levels, or to an overestimation of risk, resulting in uneconomic mitigation countermeasures. 
 
This deliverable aims to provide a rational basis for the quantification of the various 
uncertainties existent in the risk assessment and risk management processes. Focus is directed 
on the different models used for the quantification of risk and the characterisation of 
parameters in the models; a Bayesian approach is advocated for the representation, handling 
and management of uncertainties. A general description of the uncertainties in the modelling, 
prediction and decision making processes and their treatment and propagation can be found in 
Deliverable D0.3 of the SafeLand project. In order to obtain a complete picture of the issues 
and aspects concerning the treatment, quantification and management of uncertainties in the 
risk assessment, risk management and decision making processes, it is advised that this 
deliverable report be read in conjunction with the report of Deliverable D0.3. 
 
 
1.2 STRUCTURE OF THIS DELIVERABLE  

The issue of knowledge and uncertainty in the real world decision making platform is 
introduced in Chapter 2 of this report. Here, a differentiation of uncertainties into aleatory and 
epistemic uncertainties is introduced, primarily for the purpose of setting focus on how 
uncertainty may be reduced. In Chapter 3, focus is directed on the uncertainties in the 
different models used for the quantification of risk and the characterisation of parameters in 
the models. Guiding principles and a general basis for the modelling and representation of the 
underlying uncertainties in the use of these models for the quantification and estimation of 
risks are provided. A Bayesian approach is advocated for the representation, handling and 
management of uncertainties in the context of decision making and is described in Chapter 4. 
Finally, an example on the modelling and management of uncertainties associated with 
rockfall hazards following a Bayesian approach is provided in Chapter 5. 
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2 KNOWLEDGE AND UNCERTAINTY 

Knowledge about the considered decision context is a main success factor for optimal 
decision making. In real world decision making, uncertainty or lack of knowledge however 
characterises the normal situation and it is thus necessary to be able to represent and deal with 
this uncertainty in a consistent manner. In the context of societal decision making with time 
horizons reaching well beyond individual projects or the duration of individual decision 
makers, the uncertainty related to system assumptions are of tremendous importance. For 
example, different assumptions can be postulated in regard to future climatic changes, 
economic developments, long term effects of pollution etc. If the wrong assumptions are 
made, it is obvious that wrong decisions may be reached. It is thus important to account for 
uncertainties and their dependencies in the estimation of risks, commensurate to a degree that 
encapsulates the influence of the uncertainties and their dependencies on the assessed risks.  
 
The consistent treatment of knowledge and the associated uncertainty play a key role not least 
when managing risks for portfolios of assets; the consistent representation of knowledge and 
uncertainty assures that results of risk estimates obtained for different assets and for 
individual hazards can be integrated and aggregated (JCSS 2008). This implies that risk 
assessment for  e.g. objects or networks subject to several different types of hazards such as 
e.g. traffic accidents as well as rockfall can be performed by integrating the different model 
components from the corresponding application areas with due consideration to the 
uncertainties which influence these models. In the same way risks assessed for two different 
objects may also be aggregated. If different system representations could be valid, due to lack 
of knowledge, it is essential to take this into account in the process of risk-based decision 
making. This is e.g. the case when considering possible future climatic changes, when 
modelling extreme earthquake excitation and when assessing consequences for hazard events 
which go beyond historically recorded experience. 
 
There exist a large number of propositions for the characterization of different types of 
uncertainties. It has become standard to differentiate between uncertainties due to inherent 
natural variability, model uncertainties and statistical uncertainties. Whereas the first 
mentioned type of uncertainty is often denoted aleatory (or Type 1) uncertainty, the two latter 
are referred to as epistemic (or Type 2) uncertainties. Without further discussion here it is just 
stated that, in principle, all prevailing types of uncertainties can be taken into account in 
engineering decision analysis within the framework of Bayesian probability theory; a more 
detailed treatment of this issue is given in Paté-Cornell (1996) and Lindley (1976). 
 
Within such a framework, it is useful to distinguish between the aleatory and epistemic 
uncertainties. This distinction has been considered for risk assessment of technical systems, 
e.g., Apostolakis (1990) or Helton and Burmaster (1996), and increasingly for natural 
hazards, e.g., Hall (2003), Apel et al. (2004) or Straub and Der Kiureghian (2008), but has 
been discussed also for general geological applications by Mann (1993). Aleatory 
uncertainties are interpreted as random uncertainties, which, for a given model, are naturally 
inherent to the considered process; epistemic uncertainties are related to our incomplete 
knowledge of the process, often because of limited data and can be characterised in the form 
of model uncertainties and statistical uncertainties. 
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The absolute and relative magnitudes of aleatory and epistemic uncertainty are markedly 
case-specific. The differentiation into aleatory uncertainties and epistemic uncertainties is 
subject to a defined model of the considered system. The relative contribution of the two 
components of uncertainty depends on the spatial and temporal scale applied in the model. 
McGuire et al. (2005) argue that for those concerned with application of probability in a 
decision-theoretic perspective, the differentiation of uncertainty into alreatory and epistemic 
has no practical consequence. In this case, probabilities are deemed to reflect, in effect, the 
personal probability values that a decision maker is prepared to act upon. As a simple 
example, if one’s decision about how to bet on a particular poker hand is the same before the 
cards are shuffled (pure aleatory variability) as they are after five cards are dealt face down on 
the table (pure epistemic uncertainty), then our equality of preference between the two cases 
implies that we are assigning them the same probability and acting as if there is no difference 
between aleatory and epistemic uncertainties. In that case, the probability of an event (that has 
been defined in turn by probabilities and conditional probabilities of events segregated for 
whatever practical, operational reasons into epistemic and aleatory) is the average aleatory 
probability. The averaging, again, is over the epistemic probabilities. The formal basis for this 
interpretation lies in decision theory (e.g., Savage 1954, Raiffa 1968) which has the use of 
probability firmly in mind. 
 
The differentiation in uncertainties is introduced for the purpose of setting focus on how 
uncertainty may be reduced, rather than calling for a differentiated treatment in the risk 
assessment and decision analysis process. The distinction is relevant because aleatory 
uncertainty cannot be reduced for a given model. In contrast, epistemic uncertainty can be 
reduced, for instance, by collecting additional information. For this reason, a clear 
identification of the epistemic uncertainties in the analysis is crucial, as these may be reduced 
at a later time. Furthermore, neglecting epistemic uncertainty can lead to strong 
underestimation of the risk, see Coles et al. (2003) for an example.  
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3 UNCERTAINTIES IN MODELS AND PARAMETERS USED IN 
RISK ASSESSMENT AND MANAGEMENT 

3.1 INTRODUCTION 

The process of risk assessment involves the quantification and estimation of risk which, in 
turn, requires the use of models to describe the probability of occurrence of considered events 
and also the consequences of these events. Models that are used include those for triggering 
events, process of the landslide/rockfall (including soil and rock slope properties), damages to 
infrastructure, injuries and loss of lives, and damages to environment and follow-up 
consequences and socio-economic impact. This chapter provides guiding principles and as 
basis for the modelling and representation of the underlying uncertainties in the use of these 
models for the quantification and estimation of risks. 
 
3.2 GUIDING PRINCIPLES 

It is important that any risk assessment exercise should include a description of all relevant 
assumptions made in connection with the identification of the system for analysis and its 
components, as well as the modelling of the associated consequences and frequencies. The 
level and type of knowledge available to support the assumptions, as well as the modelling of 
consequences and frequencies, should be explicitly stated. In some cases information is 
available in terms of observations of e.g. accidents or events of natural hazards. In case such 
information is available, it should always be attempted to utilize this for the modelling of 
frequencies of the events. The same applies for consequences for which experience from 
previous events might be utilized. Such models should account for the statistical uncertainty 
representing the effect of limited data as well as possible model uncertainties originating from 
the use of the models for other cases than the case from which they were obtained. In many 
cases parameters which are known to have influence on the risks are simply not known in a 
given situation. This may e.g. be the case if the aggregated risk for all tunnels is assessed 
without accounting for detailed information about the geometry of the tunnels. In such cases it 
is important to account for the lack of knowledge, by representing the unknown tunnel 
geometry parameters as uncertain parameters in the formulation of the risk analysis models. 
 
Commonly the assessment of frequencies and consequences depend on models based on 
experience and engineering understanding. In such cases the uncertainty associated with the 
models should be described preferably in quantitative terms. In general the documentation of 
the knowledge should address all relevant uncertainties due to inherent natural variability as 
well as model uncertainties and statistical uncertainties. Independent of whether such 
uncertainties are neglected, assessed qualitatively or quantitatively, their treatment and 
modelling should always be stated clearly as a general rule. Neglecting uncertainties in the 
risk assessment should always be justified by sensitivity studies. 
 
A rational and solid basis for the quantitative representation of uncertainties in risk 
assessment can be derived from the theory of probability. Bayesian statistics provides a basis 
for the consistent representation of uncertainties independent of their source and readily 
facilitates the joint consideration of purely subjectively assessed uncertainties, analytically 
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assessed uncertainties and evidence as obtained through observations. All uncertainties should 
be represented in accordance with available data and/or unbiased estimated, based on 
experience and expertise. It is underlined that possible extreme consequences may be subject 
to considerable uncertainty, due to the fact that only very little information and experience is 
available on these. Indirect consequences due to the perception of adverse events by the 
public are poorly understood and the associated large uncertainty should be accounted for 
accordingly in the risk assessment. 
 
Generally, uncertainties are best represented through random variables with specified 
probability density functions and corresponding parameters. If two or more uncertainties can 
be assumed to be statistically or otherwise dependent, this dependency should be accounted 
for in the probabilistic modelling. Statistical dependency may be appropriately represented 
through correlation. Functional dependency or common cause dependency is appropriately 
represented through hierarchical probabilistic models. Only if the prevailing dependencies are 
correctly accounted for when assessing the risks for different objects and systems will it be 
possible to aggregate the risks correctly. 
 
As an example, consider the risks due to rockfall events along a road. There may be several 
objects such as tunnels, bridges and galleries along the road, each separated by roadway 
segments. The aggregated risk for the considered road can conveniently be assessed through 
the sum of the risks for all objects. However, in this case the risks for each of the objects 
depend on common factors including the average traffic volume per hour (over the day), the 
time of the event of rockfall (day/night), the type of traffic and the consequences due to 
disruption, each of which might be associated with uncertainty. When assessing the total risk 
aggregated over all objects on the considered roadway, it is thus necessary to aggregate the 
risks conditional on the common uncertain parameters first and thereafter to integrate the 
aggregated risks over the uncertain common parameters. In principle this operation is quite 
simple, but in essence very important, as it will yield a significant effect on the aggregated 
risks. If risks are aggregated without consideration of common uncertain factors, the resulting 
total risk may be grossly at error. 
 
 
3.3 BASIS OF UNCERTAINTY MODELLING 

3.3.1 Basic variables   

Any model can be considered to contain a specified set of basic variables, i.e. physical 
quantities which characterize actions and environmental influences, material and soil 
properties and geometrical quantities. The model may also contain model parameters which 
characterize the model itself and which are treated as basic variables. Finally there are also 
parameters which describe the requirements (e.g. serviceability constraints) and which may be 
treated as basic variables. The basic variables (in the wide sense given above) are assumed to 
carry the entire input information to the calculation model.  
 
The basic variables may be random variables (including the special case deterministic 
variables) or stochastic processes or random fields. Each basic variable is defined by a 
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number of parameters such as mean, standard deviation, parameters determining the 
correlation structure etc.  
 
3.3.2 Types of uncertainty  

Uncertainties from all essential sources must be evaluated and integrated in a basic variable 
model. Types of uncertainty to be taken into account are:  
 
 intrinsic physical or mechanical uncertainty  
 statistical uncertainty, when the design decisions are based on a small sample of 

observations or when there are other similar conditions  
 model uncertainties. 
 
The types of probability distributions of the basic variables can be standardised, usually 
within different classes of decision problems. For example, such standardisations for 
structural design problems can be found in the Probabilistic Model Code of the Joint 
Committee on Structural Safety (JCSS 2001).  
 
3.3.3 Definition of populations 

The random quantities used within models for a risk assessment process need to be related to 
a meaningful and consistent set of populations. The description of the random quantities 
should correspond to this set and the resulting failure probability is only valid for the same 
set. The basis for the definition of a population is in most cases the physical background of 
the variable. Factors which may define the population are: 
 
 the nature and origin of a random quantity 
 the spatial conditions (e.g. the geographical region considered)  
 the temporal conditions (e.g. the intended time of use of the structure considered) 
 
The choice of a population is to some extent a free choice of the modeller. It may depend on 
the objective of the analysis, the amount and nature of the available data and the amount of 
work that can be afforded. In connection with theoretical treatment of data and with the 
evaluation of observations, it is often convenient to divide the largest population into sub-
populations which in turn are further divided in smaller sub-populations etc. Then it is 
possible to study and distinguish variability within a population and variability between 
different populations. In an analysis for a specific structure, it may be efficient to define a 
population as small as possible as far as use, shape and location of the structure are concerned 
(this is referred to as micro-zonation). When the results are used for design on a larger scale 
(for example in a national or international code), it may be necessary or convenient to put the 
sub-populations together to the large population again in order not to get too complicated 
rules, meaning that the variability within the population is now increased.  
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3.3.4 Hierarchy of uncertainty models and scales of modelling variations 

This section contains a convenient and recommended mathematical description in general 
terms of a hierarchical model which can be used for different kinds of hazards as well as 
materials. The details of this model have to be stated more precisely for each specific variable. 
The model is associated with a hierarchical set of subpopulations. The hierarchical model 
assumes that a random quantity X can be written as a function of several variables, each one 
representing a specific type of variability: 
 
Xijk = f (Yi, Yij, Yijk)          (3.1) 
 
The quantities Yi, Yij or Yijk represent various origins, time scales of fluctuation or spatial 
scales of fluctuation. For instance Yi may represent the building to building variation, Yij the 
floor to floor variation in building i and Yijk the point to point variation on floor j in building i. 
In a similar way, Yi may represent the constant in time variability, Yij a slowly fluctuating 
time process and Yijk a fast fluctuating time process. 
 
It is often useful to distinguish between three hierarchical levels of variation: macro (global), 
meso (local) and micro, particularly as far as the spatial variations are concerned,. For 
example, the variability of the mean and standard deviation of a material property such as the 
compressive strength of concrete expressed as cylinder strength per job or construction unit is 
a typical form of global parameter variation. This variation primarily is the result of 
production technology and production strategy of the concrete producers. Such parameter 
variations between objects are conveniently denoted as macro-scale variations. The unit of 
that scale is in the order of a structure or a construction unit. Parameter variations may also be 
due to statistical uncertainties. 
 
Given a certain parameter realisation in a system, the next step is to model the local variations 
within the system in terms of random processes or fields. Characteristically, spatial 
correlations (dependencies) become negligible at distances comparable to the size of the 
system. This is a direct consequence of the hierarchical modelling procedure where it is 
natural to assume that the variation within the system is conditional on the variations between 
systems and the first type of variation is conditionally independent of the second. At this level 
it is useful to speak in terms of meso-scale variations. Examples are the spatial variation of 
soils within a given (not too large) foundation site or the number, size and spatial distribution 
of flaws along welding lines given a welding factory (or welding operator). The unit of this 
scale is in the order of the size of the structural elements and probably most conveniently 
measured in metres. 
 
At the third level, the micro-level, the focus is on rapidly fluctuating variations and non-
homogeneities which basically are uncontrollable as they originate from physical facts such as 
the random distribution of spacing and size of aggregates, pores or particles in concrete, 
metals or other materials. The scale of these variations is measured in particle sizes, i.e. in 
centimetres down to the size of crystals. 
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3.3.5 Model uncertainties  

A calculation model is a physically based or empirical relation between relevant variables, 
which are in general random variables:  
 
Y = f (X1, X2, ... Xn)            (3.2)  
 
where Y is the model output, f ( )is the model function and Xi are the basic variables. 
 
The model f (...) may be complete and exact, so that, if the values of Xi are known in a 
particular experiment (from measurements), the outcome Y can be predicted without error. 
This, however, is not normally the situation. In most cases the model will be incomplete and 
inexact. This may be the result of lack of knowledge, or a deliberate simplification of the 
model, for the convenience of the modeller. The difference between the model prediction and 
the real outcome of the experiment can be expressed as: 
 
 Y = f  (X1 ... Xn, 1 ... m)            (3.3)  
 
i are referred to as parameters which contain the model uncertainties and are treated as 
random variables. Their statistical properties can in most cases be derived from experiments 
or observations. The mean of these parameters should be determined in such a way that, on 
average, the calculation model correctly predicts the test results. 
 
 
3.4 EXAMPLE – UNCERTAINTIES IN SOIL PROPERTIES 

3.4.1 Introduction  

In this section, a short discussion on uncertainties pertaining to soil properties taken from 
JCSS (2001) is provided. Here, the term “soil properties” refers to a collection of 
characteristics of a soil body, which affect the response to loading or other actions. These 
include: 
 soil stratigraphy, i.e. boundaries for sub-volumes containing a single soil type (denoted as 

a soil unit) 
 continuum properties, such as physical or mechanical parameters or state properties within 

each of the soil units, e.g. stiffness, compressibility, shear strength, permeability, over-
consolidation ratio, initial pore pressures, etc. 

 
Together with basic characteristics of behaviour of each soil unit, e.g. drained, undrained or 
partially drained behaviour, these items constitute the basic components of a soil model. 
Distinction of soil units is usually made on the basis of lithological and geotechnical 
classification (sand, clay, organic material, or mixtures, compaction and consistency) and 
basic characteristics of response to loading. Although reliability of foundations or other 
structures in soils is also controlled by uncertainties of applied loads and other construction 
materials (concrete or steel), a characteristic feature of geotechnical structures is the 
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dominating role of the uncertainties of soil properties. Different sources of uncertainty of soil 
properties may be distinguished: 
 spatial variability of soil properties. Patterns of variability may be either continuous or 

discrete  
 limited soil survey and laboratory or in situ testing  
 inaccuracy of soil investigation methods and erroneous interpretation of investigation 

results. 
 
3.4.2 Continuous spatial variability 

Continuum properties of a soil unit may vary continuously from one spot to another 
throughout the unit. The pattern of variability may be characterized by an average trend of 
variation, e.g. increase with depth, and continuous fluctuations around the average trend. This 
type of characterization also applies to continuously varying boundaries of soil units, e.g. 
depth level and thickness of a soil layer. Usually, this type of variability is modelled as a 
continuous stationary random field; further details can be found in the Probabilistic Model 
Code of the Joint Committee on Structural Safety (JCSS 2001). 
 
Parameters in a geotechnical analysis usually refer to averages of continuum properties over 
some surface area or some volume; e.g. average shear strength along a sliding surface or 
average stiffness of a volume affected by loading. Hence, relevant uncertainties of soil 
parameters in a geotechnical analysis concern usually uncertainties of its averages over 
affected surfaces of volumes. Random field modelling of “point to point” variations forms the 
basis for quantitative assessment of uncertainties of averaged soil parameters. 
 
3.4.3 Discrete spatial variability 

Soil units with continuous spatial variability may be mixed with dislocations such as faults, 
lenses or fills, depending on the geological and morphological history. Though local of 
nature, these phenomena may have a large effect on behaviour of structures built on or in the 
ground. Often exact locations and sizes of local phenomena are difficult to infer from, if at all 
revealed by, soil survey campaigns. 
 
3.4.4 Limited soil survey and testing 

Information about subsurface conditions is acquired by field investigation in discrete survey 
points (tested samples from borings, SPT-records) or at discrete survey lines (CPT or 
geophysical records). Soil data is therefore generally only available for a small part of the 
relevant soil volume which implies, as a consequence, uncertainties which are somehow 
statistical of nature. Two types may be distinguished: 
 inaccurate statistics of soil property distributions (continuum parameters and continuous 

soil layer boundaries) 
 potential errors in the soil stratigraphy (e.g. missing local phenomena, anomalies). 
 
Both types of uncertainties may be reduced at the expense of additional survey or testing. 
Considering continuous soil properties, the effect of additional survey and testing is the 
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reduction of the error of estimated statistics by means of statistical sample theory or geo-
statistical approaches.  
 
Considering potential errors of soil stratigraphy, the effect of additional survey is likely to be 
a reduction of the probability of occurrence of such errors. However, the process of 
assessment of soil stratigraphy from available soil data is for a significant part based on 
subjective engineering judgement. Hence, quantification of probabilities of stratigraphical 
errors, and its reduction due to additional survey, is also subject of engineering judgement. 
Probabilistic approaches to assess probabilities of occurrence of potential errors in the soil 
stratigraphy, related to type, extent and intensity of soil investigation, are far from well 
developed. Yet it seems that the effects of such errors can be more drastic than the effects of 
inaccurate statistics of continuous soil properties.  
 
3.4.5 Inaccuracy of soil investigation method 

Inaccuracies may be caused by sample disturbance, test imperfections, such as poor 
reproducibility of tests or poor correlation between in situ test results and basic soil 
parameters, and human factors in conducting tests and interpretation of soil investigation 
results. Though this type of inaccuracies is often not the least important source of uncertainty, 
only part of it can be taken into account explicitly in probabilistic analyses. Gross errors of 
test equipment and in conducting tests must be avoided by appropriate quality assurance 
procedures. Gross errors in interpretation of soil investigation must be avoided by a thorough 
control scheme and an expert review. 
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4 A BAYESIAN APPROACH TO DEAL WITH UNCERTAINTY 

4.1 INTRODUCTION 

The treatment of uncertainty can be closely related to the interpretation of probability. In this 
regard, a distinction into three possible interpretations can be made (JCSS 2001): 
 
 the frequentistic interpretation  
 the formal interpretation 
 the Bayesian interpretation 
 
The frequentistic interpretation is quite straightforward and allows only “observable and 
countable” events to enter the domain of probability theory. Probabilities need to be based on 
a sufficient number of data or on unambiguous theoretical arguments only (as in coin flipping 
or die throwing games). Such an interpretation, however, can only be justified in a stationary 
world where the amount of statistical or theoretical evidence is very large. It can be said that 
such an interpretation is out of the question in most areas of risk assessment and decision 
making. In almost all cases, the data is too scarce and often only of a very generic nature.  
 
The formal interpretation gives full credit to the fact that the numbers used in a reliability and 
risk analysis are based on ideas and judgment rather than statistical evidence. Probabilistic 
structural design, for example, is considered as a strictly formal procedure without any 
physical interpretation. Such a procedure, nevertheless, is believed to be a richer and more 
consistent design procedure compared to classical and deterministic structural design 
methods. However, in many cases it is convenient if the values in the probabilistic 
calculations have some meaning and interpretation in the real world. One relevant example is 
that one should be able to improve or update the probabilities in the light of new statistical 
evidence or new knowledge.  
 
This leads into the direction of a Bayesian probability interpretation, where probabilities are 
considered as the best possible expression of the degree of belief in the occurrence of a certain 
event. The Bayesian interpretation does not claim that probabilities are direct and unbiased 
predictors of occurrence frequencies that can be observed in practice. The only claim is that 
the probabilities will be more or less correct if averaged over a large number of decision 
situations. The requirement to fulfill that claim, is that the purely intuitive part is neither 
systematically too optimistic nor systematically too pessimistic. Calibration to common 
practice on the average may be considered as an adequate means to achieve that goal.  
 
In simplistic terms – in the Bayesian approach, the aleatory or inherent uncertainties are 
treated in the frequentistic way and the epistemic or knowledge uncertainties are treated in a 
degree of belief way. The basic advantage of the Bayesian approach above the other 
approaches is that the "degree of belief" becomes exactly equal to a "frequentistic probability" 
in the limiting case of strong evidence like huge statistics or closed theoretical arguments. 
This property ensures a clear interpretation of the calculations and enables the combination of 
several sources of evidence. Another advantage is that one has the fully developed and strong 
theory of probability at ones disposition for both types of uncertainty. Further, a consistent 
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consideration of new knowledge or information as and when it becomes available is possible 
in the Bayesian approach through updating. 
 
 
4.2 BAYESIAN PROBABILISTIC MODELLING 

Consistent decision making subject to uncertainties is treated in detail in Raiffa and Schlaifer 
(1961) and Benjamin and Cornell (1970). Other aspects on decision analysis in engineering 
applications are treated in Apostolakis (1990), Paté-Cornell (1996) and Faber and Stewart 
(2003). In this section, an introduction to three different decision analyses is given – namely 
prior, posterior and pre-posterior decision analysis. Risk assessment and risk management are 
integral to the decision analysis process and hence a clear consideration and treatment of risk 
and the underlying uncertainties is also provided.  
 
4.2.1 Prior decision analysis 

The simplest form of the decision analysis is prior analysis. In the prior analysis, the risk 
(expected utility) is evaluated on the basis of statistical information and probabilistic 
modelling available prior to any decision and/or activity. This prior decision analysis is 
illustrated by a simple decision tree in Figure 4.1. In prior decision analysis the risk (expected 
utility) for each possible decision activity/option is evaluated in the principal form as: 
 

 
1

 
n

i i
i

R E U P C


                       (4.1) 

 
where R is the risk, U the utility, iP  is the ith branching probability (the probability of state i) 
and iC the consequence of the event of branch i.  
 
Prior decision analysis in fact corresponds closely to the assessment of the risk associated 
with an activity. Prior decision analysis thus forms the basis for the simple comparison of 
risks associated with different activities. The result of a prior decision analysis might be that 
the risks are not acceptable and the risk reducing measures need to be considered.  
In structural engineering a typical prior decision analysis is the design problem. A design has 
to be identified which complies with given requirements to the structural reliability. The 
representation of uncertainties is made on the basis of the existing information about materials 
and loads, however, as these have not occurred yet the probabilistic modelling involve both 
aleatory and epistemic uncertainties. As a general comment it should be noted that in the 
context of setting requirements to reliability and risk it is necessary to ensure consistency 
between the probabilistic models used for setting the requirements and the probabilistic 
models used for their verification.  
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Figure 4.1 Decision tree for prior and posterior decision analysis 
 
 

4.2.2 Posterior decision analysis 

Posterior decision analysis is in principle of the same form as the prior decision analysis, 
however, changes in the branching probabilities and/or the consequences in the decision tree 
reflect that the considered problem has been changed as an effect of e.g. risk reducing 
measures, risk mitigating measures and/or collection of additional information. Posterior 
decision analysis may thus be used to evaluate the efficiency of risk reducing activities with 
known performances. The posterior decision analysis is maybe the most important in 
engineering applications as it provides a means for the utilization of new information in the 
decision analysis – referred to as updating; this is described in short in the following.    
 

4.2.2.1 Uncertainty updating – updating of random variables 

Inspection or test results relating directly to realizations of random variables may be used in 
the updating. The distribution parameters are initially (and prior to any update) modeled by 
prior distribution functions.  
 
By application of Bayes theorem, see e.g. Lindley (1976), the prior distribution functions, 
assessed by any mixture of frequentistic and subjective information, are updated and 
transformed into posterior distribution functions. 
 
Assume that a random variable X has the probability distribution function )(xFX  and density 
function )(xf X . Furthermore assume that one or more of the distribution parameters, e.g. the 
mean value and standard deviation of X are uncertain themselves with probability density 
function )(qfQ . Then the probability distribution function for Q may be updated on the basis 

of observations of X, i.e. x̂ . 
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The general scheme for the updating is: 
 

dq )x|L(q (q)f

)x|L(q q)f
 = )x|(qf

Q

Q
Q

ˆ

ˆ(
ˆ

'

'
''



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                    (4.2) 

 
where )(qfQ  is the distribution function for the uncertain parameters Q and )ˆ( xqL is the 

likelihood of the observations or the test results contained in x̂ . Here ´´ denotes the posterior 
and ´ the prior probability density functions of Q. The observations x̂  may not only be used to 
update the distribution of the uncertain parameters Q, but also to update the probability 
distribution of X. The updated probability distribution function for X )(xf U

X  is often called the 
predictive distribution or the Bayes distribution. The predictive distribution may be assessed 
through  
 

dq)x|(qfqxfxf QX
U
X 





 ˆ)()( ''                     (4.3) 

 
In Raiffa and Schlaifer (1961) and Aitchison and Dunsmore (1975) a number of closed form 
solutions to the posterior and the predictive distributions can be found (also collected in JCSS 
2000) for special types of probability distribution functions known as the natural conjugate 
distributions. These solutions are useful in updating of random variables and cover a number 
of distribution types of importance for reliability based structural reassessment. However, in 
practical situations there will always be cases where no analytical solution is available. In 
these cases FORM/SORM techniques (Madsen et al. 1986) may be used to integrate over the 
possible outcomes of the uncertain distribution parameters and in this way allow for assessing 
the predictive distribution. 
 

4.2.2.2 Probability updating - updating of uncertain relations 

In many practical problems the observations made of realizations of uncertain phenomena 
cannot be directly related to random variables. In such cases other approaches must be 
followed to utilize the available information. Given an inspection result or other observation 
of an outcome of a functional relationship between several basic variables, probabilities may 
be updated using the definition of conditional probability or its extension known as Bayes 
formula: 
 

)(

)()(

)(

)(
)(

IP

FPFIP

IP

 IF P
IFP 


                     (4.4) 

 
F = Failure 
I = Inspection result 
 
For a further evaluation of Equation (4.4) it is important to distinguish between the types of 
inspection results. For inequality type information which may be expressed by limit states of 
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the following form ( ) 0h X , Equation (4.4) may be elaborated in a straightforward way. Let F 
be represented by M(x)   0, where M denotes the safety margin. We then have: 
 

)0(

)00(
)(

) < h(P

) <  h(  ) M(P
IFP

X

XX 
                    (4.5) 

 
where X = vector of random variables having the prior distribution )(xXf . This procedure can 
easily be extended to complex failure modes and to a set of inspection results ( 0 < )h x(i ). 
 
4.2.3 Pre-posterior decision analysis 

Using pre-posterior decision analysis optimal decisions in regard to information collection 
activities, which may be performed in the future, can be identified. Pre-posterior decision 
analysis is excellently described in e.g. Raiffa and Schlaifer (1961) and Benjamin and Cornell 
(1970). The principle behind the pre-posterior decision analysis is that the outcomes of 
planned information collection activities are assumed to follow the prior probabilistic model 
of uncertainties. Based on these assumed outcomes and taking into account any uncertainties 
associated with the observation and/or interpretation of the outcomes posterior decision 
analyses are performed. The corresponding risks are thereafter weighed with their probability 
of occurrence, again based on the prior probabilistic modelling. The pre-posterior may thus be 
interpreted as a posterior decision analysis made before new information is actually collected. 
The principle is also illustrated by the decision tree shown in Figure 4.2. An important pre-
requisite for pre-posterior decision analysis is that decision rules specifying future actions 
which will be taken on the basis of the results of the planned information collection activities 
need to be formulated. 
 

 

Figure 4.2 Decision tree for pre-posterior decision analysis 
  
 
In pre-posterior decision analysis, the risk (expected utility) for each of the possible risk 
reducing activities is evaluated as 
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where ( )a z are the decision rules describing the different possible actions that can be take on 
the basis of the result of the considered investigation z ,  E  is the expected value operator. 

( ) ( )i iP C is the product of the probability of the i’th event resulting from the decision and the 
corresponding consequences. ´ and  ´´ refer to the probabilistic description of the events of 
relevance based on prior and posterior information respectively, see e.g. Lindley (1976).   
Pre-posterior decision analysis forms a strong decision support tool and has been intensively 
used for the purpose of risk based inspection planning see e.g. Faber (2002). However, so far 
pre-posterior decision analysis has been grossly overlooked in risk assessments in general. 
 
4.2.4 Uncertainty representation in updating 

As mentioned earlier, it is important to differentiate between the different types of uncertainty 
in the probabilistic modelling of uncertain phenomena. Only when the origin and the nature of 
the prevailing uncertainties are fully understood a consistent probabilistic modelling can be 
established allowing for rational decision making regarding risk reduction by means of 
posterior and pre-posterior decision analysis. In the following the representation of 
uncertainties for representative posterior and pre-posterior decision problems is thus 
addressed and discussed. 
 

4.2.4.1 Uncertainty modelling in posterior decision problems  

In engineering decision analysis posterior decision problems typically involve the updating of 
the probability of a future adverse event F , U

FP  conditional on the observation of an event I  
which can be related to the adverse event. Such observations may in general be considered as 
being indications about the adverse event. The probability U

FP  may be assessed by Equation 
(4.4): 
 

 
)(

)(

IP

IFP
IFPPU

F


                                 (4.7) 

 
Taking basis in Equation (4.7) a simple case is now considered where the adverse event is a 
future (  Tt, ) failure event in terms of a load )(S  exceeding the resistance R of an existing 
structural component. Furthermore it is assumed that the indicator I is the event that the 
component has survived all previous realizations of the loading )(S  t,0 . Then Equation 
(4.7) can be written as: 
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                (4.8) 

 
In accordance with the considerations made in the previous R is an epistemic uncertainty 
since it has already had its realization but it is still unknown and thus uncertain. As long as no 
other information is available it would be consistent to model the epistemic uncertainty 
associated with R using the same model assumptions (distribution type etc.) as before R had 
its realization. )(S  is “in principle” an aleatory uncertainty (assuming that no model and/or 
statistical uncertainties are involved in the modelling of the load) when we consider future 
loads i.e. for  Tt, . The uncertainty associated with )(S  is of an epistemic nature when we 
consider already occurred load events, i.e.  t,0 . The wording “in principle” is used 
because the temporal dependency characteristics of the loading )(S  play a significant role.  If 
the load events (or extreme loads) in consecutive time intervals are assumed to be conditional 
independent – a relatively normal case in engineering problems – then the consideration 
outlined in the above are valid. This also implies that the uncertainty associated with the 
future loading cannot be updated on the basis of observations of the past loading. However, if 
the load events in consecutive time intervals are dependent then a part of the uncertainty 
associated with the future loading becomes epistemic as soon as its first realization has 
occurred. The “size” of the part depends on the temporal dependency.  
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3 Illustration of a load with high degree of temporal dependency 

 
 
In Figure 4.3, it is illustrated how the load events in consecutive time intervals may be highly 
dependent due to e.g. a dominating dead load component. Before the dead load component is 
realized the loading in the future might be subject to aleatory uncertainty only. As soon as the 
dead load component is realized a large part of the uncertainty associated with the future 
loading becomes epistemic. This effectively implies that this part of the uncertainty associated 
with the future loading can be updated on the basis of observations of the past loading. In 
other words – the part that can be updated is exactly the epistemic part of the uncertainty. If 
the probabilistic modelling of the uncertainties and the probability updating is performed in 
accordance with Equation (4.8) and the considerations outlined in the above then, the 
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resulting probabilistic modelling and the representation of the different types of uncertainties 
is consistent. However, if in the representation of the adverse event and the updating event the 
different types of uncertainty and the temporal dependency is not consistently taken into 
account, the results may become grossly erroneous and non-physical. 
 

4.2.4.2 Uncertainty modelling in pre-posterior decision problems  

As can be realized from Equation (4.6), pre-posterior decision problems may be seen as a 
series of posterior decision problems for which the optimal solutions are averaged out over 
the entire prior uncertainty. The formulation of each of the posterior decision problems is 
based on an updated probabilistic model of the prevailing uncertainties assuming a given 
“outcome of nature”. Therefore the considerations made for posterior decision analysis, 
concerning the treatment of uncertainties are also valid for pre-posterior decision problems. 
 
4.2.5 Use of Bayesian probabilistic networks (BPN) 

The risk assessment and management of natural hazards such as landslide and rockfall events 
requires a systematic and consistent representation and management of information for a 
typically complex system with a large number of constituents or sub-systems. Such 
representation must enable a rational treatment and quantification of the various uncertainties 
discussed earlier; these uncertainties can be associated with the constituents as well as the 
system. The consistent handling of new knowledge about the system and its constituents as 
and when it becomes available and its use in the risk assessment and decision making process 
is also essential. Further, the numerous dependencies and linkages that exist between different 
constituents of the system need to be systematically considered. The above requirements and 
considerations necessitate the use of generic risk models for the assessment and management 
of risks due to natural hazards. The use of Bayesian Probabilistic Networks (BPNs) has 
proven to be efficient in such risk assessment applications (Graf et al., 2009; Faber et al., 
2007; Nishijima and Faber, 2007; Bayraktarli et al., 2006; Bayraktarli et al., 2005; Faber et al. 
2005; Schubert et al, 2005 and Straub, 2005). A brief overview of the principles and use of 
Bayesian Probabilistic Networks is provided below; details can be found in Jensen (2001). 
 
Formally, Bayesian probabilistic networks (BPN) are directed acyclic graphs whose nodes 
represent random variables in the Bayesian sense: they may be observable quantities, latent 
variables, unknown parameters or hypotheses. Edges represent conditional dependencies; 
nodes which are not connected represent variables which are conditionally independent of 
each other. Each node is associated with a probability function that takes as input a particular 
set of values for the node's parent variables and gives the probability of the variable 
represented by the node. Efficient algorithms exist that perform inference and learning in 
BPNs. Using a BPN offers many advantages over traditional methods of determining causal 
relationships. Independence among variables is easy to recognize and isolate while 
conditional relationships are clearly delimited by a directed graph edge: two variables are 
independent if all the paths between them are blocked (given the edges are directional). 
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5 EXAMPLE – MODELLING OF ROCKFALL HAZARDS 

5.1 INTRODUCTION 

An example taken from Straub and Schubert (2008) concerning the modelling of rockfall 
hazards and design of rockfall protection structures following a Bayesian approach is 
considered here. This example has also been reported in Deliverable D0.3 of the SafeLand 
project (SafeLand 2011). 
 
Rockfall is generally considered an inherently uncertain process, i.e., it is not possible to 
deterministically predict the time and the extent of the next event. However, it is possible to 
describe rockfall using a probabilistic model, describing the frequency ( )VH v with which a 

rock of a certain volume V or larger is detached. Because the assessment of rockfall is based 
on limited data and simplified models, the probabilistic model is itself subject to uncertainty 
itself; this can be represented by modelling the parameters of ( )VH v  as random variables. In 

this case, we write ( | )VH v θ  to indicate that the model is defined conditional on the values of 

its parametersθ . This epistemic uncertainty on θ  can be depicted by credible intervals (which 
can be considered as the Bayesian equivalent of confidence intervals) on the exceedance 
frequency curve as demonstrated in Figure 5.1.  
 

 

Figure 5.1 Exceedance frequency – illustrating the difference between epistemic and aleatory 
uncertainty 
 
 
5.2 UNCERTAINTIES IN ROCKFALL HAZARDS 

As with most natural hazards, the uncertainties related to the occurrence of the hazard are 
generally large for rockfall hazards. In the literature, this uncertainty is generally represented 
by an exceedance frequency as illustrated in Figure 5.1, yet without explicit consideration of 
the epistemic uncertainty. Instead it is (implicitly) assumed that the frequency of an event 
with a certain rock volume is a deterministic value, implying that if the site were observed 
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over a sufficiently long period, exactly the predicted frequency of rocks would be 
experienced. Clearly, this is not the case; instead the predicted frequency is a best estimate of 
the true rate of occurrence. 
In the literature, various methods are proposed for identifying the exceedance frequency at a 
specific site. These include: 
 

i) the analysis of historical datasets, e.g., Hungr et al. (1999) or Dussauge-Peisser (2002), 
ii) empirical models which describe hazard as a function of different indicators (observable 

parameters) such as topography and geology, e.g., Budetta (2004) or Baillifard et al. 
(2004), 

iii) phenomenological (mechanical) models, e.g., Jimenez-Rodriguez et al. (2006) or 
Duzgun et al. (2003), and 

iv) expert opinion, e.g., Schubert et al. (2005).  
 
All these methods are useful in a particular context. While methods i) and ii) are generally 
more appropriate for the analysis of larger areas with less accuracy, iii) and iv) are more 
suited for the detailed analysis of a specific site.  
 
Large-scale models (i) and ii) above) are generally based on statistical methods. 
Consequently, it is mathematically convenient to express the exceedance frequency in a 
parametric format. Traditionally, a power law has been applied to describe the relation 
between rock volume V  and the exceedance frequency: 
 

  b
VH v avθ           (5.1) 

 
The statistical parameters of the model characterising the shape of the exceedance frequency 
curve are T[ , ]a bθ . The epistemic uncertainty is included in the analysis by modelling θ  as 

a random vector. Using the probability density function ofθ ,  fΘ θ , the unconditional 

exceedance frequency is computed as: 
 

     V VH v f H v d  Θ

Θ

θ θ θ          (5.2) 

 
There are various sources for epistemic uncertainties in large scale models, preventing an 
exact prediction of the exceedance frequency for a particular site. A brief description of these 
is provided below. 
 
Statistical uncertainty 
The parameters of the large scale models are derived empirically from data sets. Because of 
the limited size of these data sets, the estimated parameters are subject to statistical 
uncertainty. 
 
 
 
Measurement uncertainty 
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Measurements and recordings of the geological properties are typically subject to uncertainty 
and observations of historical events are often incomplete and biased and must rely on local 
experts. As an example, rocks on a road will generally be reported and documented, but those 
that missed the road may often not be. Measurement uncertainty also results from derives 
from equipment, operator/procedural and random measurement effects. 
 
Model uncertainty 
Extrapolation of the statistical models to areas other than those for which observations are 
available leads to additional uncertainty as the geological and topographical characteristics 
will be different for these areas. GIS-based models will take into account some of these 
parameters, but the omitted parameters will lead to an uncertainty in the model predictions. 
Uncertainty also occurs due to the approximations and simplifications inherent in empirical, 
semi-empirical, experimental or theoretical models used to relate measured quantities to non-
measurable numerical parameters used in estimation. Finally, although the power-law is, for 
example, commonly assumed to express exceedance frequency in the case of rockfall hazard, 
it has not been justified by phenomenological considerations. Thus, it is not ensured that the 
parametrical model accurately represents the actual behaviour. 
 
Spatial variability 
The frequency of hazard events varies in space. The observations represent an average over an 
area and the resulting parameter values, therefore, do not reflect the variations from the 
average.  
 
Temporal variability 
The frequency of hazard events varies in time. When working with annual frequencies, the 
seasonal changes do not affect the analysis, but the frequency may change over the years or 
may be dependent on extreme events (e.g., earthquakes). However, in certain instances, e.g., 
when temporal closure of the road is considered as a risk reduction measure, seasonal 
variations must be explicitly addressed by the analysis.  
 
How can these uncertainties be quantified? Statistical uncertainty can be quantified by using 
standard statistical methods such as Bayesian analysis, see, e.g., Coles (2001). Measurement 
uncertainty can generally be estimated when the data collection method is known. 
Unfortunately, no simple analytical method is available for estimating model uncertainties. A 
solution is to rely on expert opinion, i.e., to ask experts about their confidence in the models. 
It is also possible to compare the model with observations which have not been used in the 
calibration of the model (model validation) or to compare different models. Furthermore, it is 
possible to include additional parameters in the formulation of the exceedance frequency. The 
model uncertainties are then reduced while the statistical uncertainties increase, but the latter 
can then be estimated analytically. Coles et al. (2003) demonstrate this for the analysis of 
rainfall data. The spatial and temporal variability can be analysed quantitatively, if data is 
available in sufficiently small scale; a data-set showing the spatial distribution of rockfall 
events is presented in Dussauge-Peisser et al. (2002). Spatial variability can be described by 
the spatial correlation of the relevant characteristics. In most practical cases, however, a 
simplified approach is favourable, whereby smaller areas are determined within which the 
spatial variability can be neglected. Temporal (typically seasonal) variability can be described 
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by time-dependent parameters in the exceedance frequency model, corresponding to the 
assumption of the hazard event (e.g. rockfall) following an inhomogeneous Poisson process. 
For small-scale models, the application of the power-law is not always justified, in particular 
if different mechanisms are underlying the detachment of smaller and larger rocks. In such 
cases it might be more appropriate to utilize a non-parametric model in which the rock 
volume is divided into a discrete number of intervals (e.g., 10m3 – 50m3) and the model gives 
the annual frequency of rocks for the different volume ranges. 
 
 
5.3 BAYESIAN ANALYSIS AND UPDATING 

For the modelling of rockfall exposure, Bayesian analysis is particularly useful, as it 
facilitates the consistent combination of different information in a single model. This is 
because the probabilistic model can be updated when new information becomes available. 
Consider the case where rockfall exposure at a particular location is expressed by the model 

( | )VH v θ  with uncertain parametersθ . When new information becomes available (denoted by

z ), the probability distribution of the uncertain parameters can be updated using Bayes’ 
theorem, which in its general form can be written as: 
 

     f L fΘ Θθ z θ z θ   (5.3) 

 

 fΘ θ  is the prior probabilistic model,  fΘ θ z  is the updated model and  L θ z  is the 

likelihood function, which describes the new information. The proportionality constant is 
obtained from the fact that integration of  fΘ θ z  over the entire domain of θ  must yield 

one. The likelihood function is the probability of the observed information given the 
parameters θ , i.e., 
 

   L Prθ z z θ   (5.4) 

 
To demonstrate the derivation of the likelihood function, consider the case where the 
available information is a set of observed detached rocks 1...i n  for a specific mountain 
slope, which are described by their volume iv  and the time period zT  during which they 

occurred. Only rocks with a volume larger than thv  have been recorded (th: threshold). We 

make the following simplifying assumptions: a) that the rockfall follows a homogeneous 
Poisson process as discussed earlier and b) that the observations are free of error (i.e., all 
rocks are recorded). These assumptions hold under particular circumstances only, yet they are 
a reasonable approximation to many real situations and they are suitable for illustrative 
purposes. Under these assumptions, the probability of observing exactly n  rocks with a 
volume larger than thv  is given by the Poisson distribution with parameter ( | )V th zH v Tθ  as: 
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Given that a rock with volume larger than thv  has detached, the likelihood of its volume being 

iv  is proportional to h ( | ) / H ( | )V i V thv vθ θ  for i thv v . Because all observations are assumed 

independent events, the likelihood function is obtained by multiplying these terms. The 
likelihood function representing the observation of n rocks with volumes 1... nv v  on the 

considered mountain area is then: 
 

     
1

exp
n

V th z V i
i

L H v T h v


    θ z θ θ        (5.6) 

 
( | )V ih v θ  is the annual frequency density of V . Note that the observations apparently must 

relate to the frequency density and not the probability density, because we cannot observe just 
the largest rock that has fallen during a certain period, rather, the observed rocks may all be 
from the same time period. 
 
 
5.4 UNCERTAINTIES IN ROCKFALL TRAJECTORY 

Once a rock is released, its trajectory is mainly determined by the topography, its mode of 
motion (free fall, rolling bouncing or sliding) and the characteristics of the surfaces of the 
rock and the ground. All these factors contribute to the uncertainty in the prediction of the 
trajectory. Existing numerical tools model this uncertainty by means of crude Monte Carlo 
simulation (MCS); an overview is provided by Guzzetti et al. (2002). There exist two- or 
three-dimensional models and there are differences in the physical representation of the rock: 
The so called lumped mass approach represents the rock by a single mass point, neglecting 
the geometry of the stone. The rigid body approach models the stone by idealized geometries 
(e.g., cylinders, spheres or a cuboidal shape, Ettlin 2006) with varying physical and material 
properties. Hybrid models combine a lumped mass approach to simulate the free fall with a 
rigid body approach to simulate the contact with the ground surface. Finally, different models 
are used to simulate the impact of the rock on the ground (Dorren, 2003), a simple approach 
being the use of coefficients of restitution (Stevens 1998). The impact is the most intricate 
part of the falling process and its modelling is associated with large uncertainties. The 
modelling cannot account for the variability in the ground material (particularly in zones 
covered with vegetation) and the local geometry of the ground and the rock. These 
uncertainties are inherent to the model and can therefore be considered as aleatory. In 
addition, there is an epistemic uncertainty because of the limited basis for estimating the 
model parameters (see e.g., Robotham et al. (1995), Azzoni et al. (1995) and Chau et al. 
(2002) for estimation of coefficients of restitution). Additional epistemic uncertainty is due to 
the simplified modelling of the slope profile at the impact location. In many applications, the 
profile surface in the models is generated from a digital elevation model (DEM) with limited 
resolution and between the points provided by the DEM the terrain is assumed to be linear. If 
the model is 2-dimensional, the reduction to a single plane is an additional source of epistemic 
uncertainty. 
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The outcome of a two-dimensional rockfall model is illustrated in Figure 5.2. In this example, 
the relevant numerical result that will be utilized for risk assessment is the probability density 
function (PDF) of the energy of the rocks when reaching the road. This distribution should be 
evaluated conditional on the rock volume, ( | )Ef e v , for different values of v . This can then be 

combined with the distribution representing the rock detachment. Available rockfall analysis 
software typically allow entering the detached volume as a Normal distributed random 
variable, but because the volume of detached rocks is generally not Normal distributed, 
results obtained with this assumption cannot be used for risk assessment directly. 
 

 

Figure 5.2 Illustration of the rockfall trajectory modelling. 
 
MCS in existing rockfall trajectory analysis tools accounts only for the aleatory uncertainty. 
However, while it is important to be aware of the additional epistemic uncertainty associated 
with these models, for most practical applications, the error associated with neglecting this 
uncertainty is tolerable. This is due to the fact that in the analysis of rockfall trajectories, 
unlike in the modelling of rockfall exposure, the probability of extreme events is of less 
importance, and that the middle range of the distribution is less affected by the epistemic 
uncertainties. 
 
 
5.5 UNCERTAINTY IN THE PERFORMANCE OF ROCKFALL PROTECTION 

STRUCTURES 

Rockfall protection structures such as flexible nets or fixed galleries can stop the rocks, but 
their capacity is limited. This capacity, denoted by R, can be quantified in terms of the amount 
of energy that the structure can absorb. R depends on the type of structure, but also on the 
characteristics of the rock beyond the impact energy. The uncertainty in the capacity is 
considered by modelling R as a random variable, represented by its PDF conditional on the 
rock volume, ( | )Rf r v . Hereby, the velocity of the rock at the impact is determined as a 

function of the energy and the volume. ( | )Rf r v  should include both epistemic and aleatory 

uncertainty related to the structural capacity. Structural reliability analysis can be used to 
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evaluate ( | )Rf r v  for a given type of structure, Schubert et al. (2005). Alternatively, for 

standard protection systems, ( | )Rf r v  can also be estimated from tests. However, because of 

their cost, the number of tests is often limited and, therefore, test results should be combined 
with a reliability analysis to obtain a probabilistic estimate of the capacity. 
 
 
5.6 UNCERTAINTIES IN ROCKFALL ROBUSTNESS 

A measure of how a system such as a rockfall protection structure reacts to a hazard or a 
damage or failure event can be expressed as the robustness of the system. The robustness of 
such a system can be accounted for by estimating the expected consequences for a given 
failure event following the approach described in JCSS (2008). As an example, the expected 
number of fatalities and injuries is evaluated by multiplying the probability that a number of 
people are present at the location at the time of a rockfall with the probability that somebody 
is killed or injured by the rock. Those probabilities represent aleatory uncertainties. There is 
an uncertainty as to the values of these probabilities, which is of an epistemic nature (it could 
be reduced by collecting additional data), but because only the expected number of fatalities 
and injuries enters the computation, the computed risk generally will not be very sensitive to 
these epistemic uncertainties. In most instances they can be neglected, as is done in practice. 
An important part of system robustness modelling is the assessment of so-called “user costs”, 
representing the socio-economical costs inflicted by the temporary disuse of the considered 
system, typically a transportation link. The user costs as assessed by road authorities exhibit 
large differences (e.g. Nash, 2003). However, it must not be concluded that these differences 
are due to epistemic uncertainty; rather, they are caused by different model assumptions. 
Therefore, this problem must be addressed by the decision maker, who must determine the 
model assumptions that represent his/her preferences. 
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6 SUMMARY AND CONCLUSIONS 

The consideration and treatment of uncertainties is an essential part of any risk assessment 
and risk management process. Uncertainties can either be naturally inherent or modelling and 
statistical related. This deliverable aims to provide a rational basis for the quantification of the 
various uncertainties existent in the risk assessment and risk management processes. A 
general description of the uncertainties in the modelling, prediction and decision making 
processes and their treatment and propagation can be found in Deliverable D0.3 of the 
SafeLand project. In order to obtain a complete picture of the issues and aspects concerning 
the treatment, quantification and management of uncertainties in the risk assessment, risk 
management and decision making processes, it is advised that this deliverable report be read 
in conjunction with the report of Deliverable D0.3.  
 
The issue of knowledge and uncertainty in the real world decision making platform is 
introduced in Chapter 2 of this report. Here, a differentiation of uncertainties into aleatory and 
epistemic uncertainties is introduced, primarily for the purpose of setting focus on how 
uncertainty may be reduced. In Chapter 3, focus is directed on the different models used for 
the quantification of risk and the characterisation of parameters in the models. Guiding 
principles and a general basis for the modelling and representation of the underlying 
uncertainties in the use of these models for the quantification and estimation of risks are 
provided. A Bayesian approach is advocated for the representation, handling and management 
of uncertainties in the context of decision making and is described in Chapter 4. Finally, an 
example on the modelling and management of uncertainties associated with rockfall hazards 
following a Bayesian approach is provided in Chapter 5. 
 
A rational and consistent understanding and consideration of uncertainties is vital for any risk 
assessment and risk management process and for ensuring rational and optimal decision 
making. It is hence useful and instructive to think about the nature of the various types of 
uncertainties, particularly in the context of risk communication. While communicating the 
results of risk assessments and analyses with the outside world, it is important to distinguish 
primarily between the objective probabilities related to scatter and uncertainty from a natural 
origin on the one hand and subjective probability estimates for knowledge (epistemic) 
uncertainties on the other hand. When considering updating and incorporation of new 
knowledge, it is important to understand how uncertainties change characteristics as functions 
of both the point in time where they are looked upon and as functions of the scale of the 
modeling used to represent them. This also influences the level of detail required for the 
treatment of uncertainties in any risk assessment and risk management process. 
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